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1. INTRODUCTION

The problem of numerical grid generation is of current interest in many
branches of engineering particularly in aeronautics, mechanical, and civil
engineering. The spatial grids are generated either by algebraic methods
using various spline and transfinite interpolations or by solving certain
partial differential equations. In this regard, a book [1]. review articles
[2], [3], and conference proceedings [u, 5, 6] may be consulted.

The progress report under consideration is in reference to the problem
of grid generation in a given surface by solving a set elliptic partial
differential equations. The mathematical model used in the present research
has been developed by the author under previous AFOSR grants and has been
described in publications [7 - 16]. Reference [16] nhas been attached as an
appendix in which Eqs. (19) and (21) describe the mathematical model.

The developed mathematical model has been used to generate the Car-
tesian coordinates as functions of the curvilinear coordinates when the
surface in which the coordinates are to be generated has been specified
either analytically or by discrete data points. In most practical situa~
tions the surface is usually specified by discrete data, and therefore,
there is a need to develop computer routines to fit a global equation of the
form F(x,y,2) = 0. For complicated body shapes e.g. an airplane, we have to
divide the surface into suitable sections and then fit the functions sepa-
rately. The need for specifying the function F is due to the fact that the
forcing term R in Eqs. (19) or (21) of the appendix is derived from F. In
the period under consideration we have devised various routines for the

above noted purpose and they are described in Section 2. The developed
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computer code has been used in many complicated shaped surfaces. Figure 1

shows some current results.

2. NUMERICAL SCHEMES
A computer program for the numerical solution of Eq. (21) has been

developed by using point and line SOR. The essential difference between the
grid generation in a flat space and in a curved surface is in the appearance
of the forcing term on the right of Eqs. (19) and (21). The term R in Eqs.
(19) and (21) depends on the first and second partial derivatives of the
fitted function F with respect to the Cartesian coordinates. (Refer to [15]
for the formula of R in terms of F). The following routines have been
developed and used in a variety of problems.

1. Multidimensional least square technique.

2. "Overlapping" least square technique.

3. Fourler decomposition of each section of a surface and then

blending them to obtain the equation of a square.
Beside the development of the above techniques, we have also developed
the following two separate programs in the solution of Eq. (21).

1. For the acceleration of the iterative process, a "multigrid" tech-
nique in the solution of Eq. (21) has been incorporated. From the
test cases conducted so far it looks that the solution time with
multigrid is not significantly lower than that of SOR. Research in
this area is, however, continuing.

2. A routine for the calculation of the optimum acceleration parameter

has been developed which works quite well with the SOR technique.
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3. CONCLUSIONS

Computer programs have been developed which solve the problem of nu-
merical coordinate generation in a given surface. The mathematical model is
formed of a set of elliptic equations and thus the resulting coordinates in
the surface are sufficiently smooth. The grid generation in arbitrary

surface i{n accomplished by dividing the surface into suitable subregions and

then joining them to obtain the coordinates in the integrated surface.
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Figure 1. (a) Generation of surface grids on tne fuselag® of an airplane
with wing-pody intersection shown.
{(v) Integr‘ation of wing and fuselage generated coordinaces to
exnibit the coordinates on wind-body combination.
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A Synopsis of Elliptic PDE Models for Grid Generation* E“:

= ; )
Z. U. A. Warsi b,

- Department of Aerospace Engineering ),
Mississippi State University 0
Mississippi State, Mississippi 39762 ::
Transmitted by Joe Thompson :.

. ABSTRACT ::
' .

\

This paper is devoted to an analytical comparison of the various elliptic partial-dif- ‘,':
ferential-equation (PDE) models which are in current use for grid generation. These it
A o ' o . comparisons, particularly between the equations from the Laplace-Poisson system and 4

TTT ST e s the equations from a Gaussian approach, have yielded useful expressions connecting

) ' - : the 3D Laplacians and the surface Beltramians. This effort has specifically been ;:
successful when the transverse coordinate leaving the surface is ortbogonal to the !
surface. Equations which are derivable from Cartesian-type Poisson equations and ]
those obtained by using the variational principle in surface coordinates bave also been b
considered. ;:‘

. \
,:L

1. INTRODUCTION by

"

The problem of generating spatial coordinates by numerical methods is of W]

much importance in many branches of engineering mechanics. A review of Y
various methods of coordinate generation in both two- and three-dimensional "~
Euclidean spaces is available in Thompson, Warsi, and Mastin (1, 2}. ~

This paper is exclusively directed to a collection and apalytical compari- N

sons of the various elliptic partial-differential-equation (PDE) models which b

are currently in use for numerical coordinate generation. -

The theory of grid generation does not depend on any set of so-called N

‘ conservation laws, and thus a variety of equations and methods of different ’
characters can be used to obtain the grids. Any ¢ nsistent method, depending g
either on the solution of PDE:s or any algebraic method, can be used to obtain ")
intersecting trajectories in either 2D or 3D Euclidean space.! ‘
*Research supported by the Air Force Office of Scientific Research under Grant AFOSR-85-0143. )

! The question of space comes into the picture when it is realized that all the metric coefficients -
§., cannot be selected arbitranly. In fact, these metnic coefficients must be 5o selected that a set =
of second-order PDEs become satisfied. For details refer to Warsi (3]. 0}

¢
’
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296 Z.U. A. WARSI

In light of the above discussion, any consistent set of PDEs is sufficient to
form a mathematical model. In bounded domains the most natural choice is
- that of a mathematical model formed of elliptic PDEs. The simplest set of
equations, which also yields the smoothest grid, consists of the Laplace
equations of the curvilinear coordinates in the Cartesian physical space. As a
next logical step, a set of Poisson equations can be selected so as to have a
degree of control of the distribution of grid lines. On inverting these equations
a set of quasilinear PDEs are obtained [see Equations (2),(4)}.

After the development of the problem of grid generation through solving
the inverted forms of the Laplace and Poisson equations in 2D Euclidean
domains by Allen [4], Winslow [3], Chu {8), and Thompson et al. [7], a logical
extension was to use the same equations for 3D domains, as has been done by
Thompson and Mastin (8]. Parallel to the above-noted developments, Warsi
[3, 9, 10] proposed a Gaussian approach which basically generates surfaces
and thus can be used either for generating curvilinear coordinates in a given
surface {11] or for generating 3D coordinates by generating a series of
surfaces starting from the data on the given surfaces [9, 12]. The Gaussian
approach in fact depends on a manipulation of the formulae of Gauss for a
surface, and thus the resulting equations have the surface coordinates as the
independent variables. This manipulation introduces the Beltramians of the
curvilinear coordinates and the sum of the principal curvatures of the surface
in a natural way. Since the formulae of Gauss for a surface hold true for any
allowable coordinate system introduced in the surface, the equations pro-
posed by Warsi {3, 9, 10] must also have the same properties. Further,
because of the use of Gauss formulae, the proposed equations are optimal in
the sense that the number of terms and the amount of information in the
equations is fust sufficient for the generation of either surfaces or coordinates.

In this regard we can justifiably call a mathematical model “optimal” if it
can be reduced to the form of the proposed equations {cf. Equation (19a)).

Beside the Laplace-Poisson system and the Gaussian approach, we have
also derived the surface generating equations by the use of the variational
principle. The resulting equations are near optimal for the Gaussian system.

2. BASIC ELLIPTIC MODELS

Poisson Equations as Grid Cenerators

Since the publication of the TTM method [7], there has been extensive use
of the Poisson equations in the physical r-space to generate both 2D and 3D
grids [2]. In practically all cases the main aim is to have those equations in
which the computational coordinates appear as the independent variables,

. . . . R T LR L SRR LIRS R PN L T Sl Ny
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Synopsis of Elliptic PDE Models 297

and therefore, the Poisson equations have to be inverted by making the

_physical coordinates r = (x, y, z) the dependent variables. This inversion can
of course be carried out in a nontensorial manner by using the chain rule of
partial differentiation. However, it is much simpler to follow either of the
following two methods to attain the same result.

Method I: Inner multiplication of Equation (A2)? by g‘/ and the use of
Equation (A4) resuits in

gl i +(vEFr,=0. 1)

Introducing the second-order differential operator

32
= pp'l
D=ee dx'dx/
into Equation (1), we get
Dr+g(v%*)r . =0, @)

which is the desired equation in vector form in the computational plane.
Method II: In Equation (A3), writing ¢ =r =(x,y, 2) and again using
Equation (A4), we obtain the same equation (2).

To form a closed system of equations from Equation (2) one has to specify
the Laplacians ¥ %* in a suitable fashion. As described in Reference (3], a
general specification for the Laplacians is to write

vik=giPt, k=12 or k=123, (3)

and then Equation (1) takes the form
g’f(r',,. + P,.';r_k) =0. (4)

In Equation (3), the P,’; = Pj‘: are intended to be arbitrarily specified control
functions. Equating the right-hand sides of Equation (A4) and Equation (3),

% Refer to the Appendix.
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238 Z. U. A. WARSI

we have
g!iPk= — g'ITE. )
Since g'/ are not arbitrary, we conclude that
thadiad

for all values of i, j, k.

Recursive Property of P .

We now impose the followmg requirement on Pi, If the coordinates are
such that their Laplacians vanish, i.e., V%* = 0, then the control functions
P" vanish individually for all indices i, j, k.

S , The importance of this requirement becomes clear by considering Equa-

e tion (5) in which [ are the Christoffel symbols. Thus, when the Laplacians
of the coordinates vamsh the right-hand side of Equation (5) vanishes as an
inner sum, but the left-hand side vanishes due to the imposed restriction of
“individual vanishing” of P for such coordinates. Denoting the coordinates
which satisfy the Laplace equauons by x(q), we then have

P:";(O) =0, r:';(o) *0, g(i(,;)rikj(()) =~0. (8)

We now consider those coordinates which satisfy the Poisson equations. In
these coordinates it is of interest to know the relation between the successive
P’s under successive coordinate transformations. To this end, we consider two
successive allowable transformations denoted by x,,_;, and x{,,,, with 13, as
those coordinates which satisfy the Laplace equation. Thus, in the x{ _,,
coordinates, Equation (4) is

y 3% pr ar 0 )
_ PP, ———— | =0, 7
Bim-n 0% (moyy 0%y Hem x)ax(”m—n

and in the x,, coordinates

y a%r ar
g(’r’n) —._—+Pq(m)ax,, =0. (8)

]
0% (,py 0% {m, (m)

I a S ) L a s e seaa YEr.rel @), M

|
l

e I L e

- -

J]




T UTHTEEY wwwa -y

Synopsis of Elliptic PDE Models 299

Using the transformation law (A7) in the form

-
-

‘
3%im_1y 0%[moy on

T , 9
E(m-1 ax(,m) ax(",,,) &(m) (9)

and the chain rule of partial differentiation of r in Equation (7), and
comparing the resulting equation with Equation (8), we get

N . P k n
N L
! 0%{met)  OX(m-1)0%(m-1)| O%(m) O%lm,
- Rt — establishing a relation between the successive P’s. This is how P transform

from one coordinate system to the other. Also, using Equation (A9) in
Equation (10), we have

P k n
0xly Ox(moyy Ox0noyy

Pi,;(m)= —ri';(m)+(P:n(m—l)+rl:n(m—l)) ax:m—l) ax(‘,,,) 3x{m . (11)

Equation (11) establishes a relation between the P’s and I'’s. In particular,
for m =1, Equation (10) reduces to Equation (63) of Reference (3].

From the recursive relation (10) it is a straightforward matter to show that
the transformation x{y, — x;, = %{g of P} is the same as the transformation
X{0, ~* X(z)- The use of the chain rule for

i i
9x (g azx(z)
=, - T
axf;, dxf;, 9x (),
and of the formula
%%, B 0%y, 9xl, dx(y, Ixl,
k- i k
dx},, 9x ), dx gy, Ixgy, Oxy, dx}), Ixf,

gives the required result.

Other Poisson Systems
It is also possible to have equations in which the dependent variables are
non-Cartesian, e.g., cylindrical or spherical coordinates. In a paper by Ghia




300 Z.U. A. WARSI

. T . et al. [13], the computational coordinates are assumed to satisfy a Poisson
) o7 . system in the cylindrical coordinates.
¢ o ) ’ To generalize this concept, let x* be a coordinate system on which the
‘ coordinate system i° (e.g., cylindrical) is to be generated. From Equation
(A4)v
s v& =g}, (12) -
; and .
K
: sz = —g'fl"‘=-g"P"
. =P*  (say). (13)
¥
In Equation (12) both the metric coefficients and the Christoffel symbols are
4] already known in terms of the ° coordinate system. [If * are the Cartesian
‘, coordinates, then Equation (12) is an identity.] From Equation (A3) we then
? have
; i % oz’ AFs 14
! e Geram P T (14
. ' which are the transformed equations in the computational space. By using
: . N o , Equation (A10) we can also write Equation (14) as
:: . -mn Ci 2 2p ki_ = (] 2—111*: (15)
. C " a 3 ,) ] ] - ) ij?
‘ - where
o
- ox’
y J=det| — P
)‘
.l
‘: Recently Fujii [14] used a Cartesian-type Poisson system between two
:: curvilinear coordinate systems. Let x* and %° be two curvilinear systems.
Consider the Cartesian-type Poisson system
[} a?.xr
i Z — = P', (16)
f , 0%” %%
&
\
L
Ly
,‘.
K
D ) - s .
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Synopsis of Elliptic PDE Models 301
where x" is the curvilinear system on which the x” system (e.g., spherical) is

-to be generated. To obtain the inversion of Equation (16), we take the inner
product of Equation (Al11) with 3%'/3x" to obtain

%' ax' axf %" ax' )
dx'9x! az* 9F"  9x* 9x" dx" (17)

Setting k=n=1, k=n=2, k=n =3 and adding, we get

% Iz %’

ij = ——— Y —_———
¢ dx' dx/ ax’ § az®? 9z*»’

so that

CYo———= - —P", (18)

where

Equation (18) is the inverted form of Equation (16). Similarly to the case of
actual Poisson system, the functions P’ are again the arbitrary specified
functions. Altematively, we can also write

Pr=C'p],
and then P; are the arbitrary control functions.

Beltramians as Grid Generators in Curved Surfaces

The problem of generating curvilinear coordinates in a surface has im-
portant applications in many branches of engineering. In this paper we are
interested only in one differential model which generates coordinates in
surfaces embedded in R, and which reduces to Equation (2) in a natural way
when the surface degenerates into a plane. To achieve this aim, we consider
the formulae of Gauss [Equation (Al2)] for a surface » = const. Inner
multiplication of Equation (A12) by G,g*# yields

Dr+G,(&9%%)r s =n"'R, (19a)
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- where

o . D=G,g*%3,5,  n'” = unit surface normal,

'1 G--gaagﬂﬁ_' (guﬂ)z' v, C,B cydic, (lgb)
" | R=G,g%b,z = (k" +K')C,, ,
, ) b,z are the coefficients of the second fundamental form, and k{, k{]’ are the
?‘: principal curvatures at a point of the surface »=const. The Beltramians .
1, A2'x?® are defined by Equation (A14). It is readily seen that when the surface
2, v = const degenerates into a plane, then R =0 and A, becomes the Laplace
-;,‘ operator. K

B . A _ Equation (19a) can be used either for the generation of coordinates in a

- . given surface or for the generation of 3D spatial coordinates between two
9:|: : : oo given surfaces. In the latter case it has been shown [10) that

1

K

l:: - R= Grgaﬁr:ﬁk(,)v A(') = n"’-r',, (lgc)
V : . - R

«' h

i where [}, are the 3-space Christoffel symbols and x” is the transverse

coordinate.

.

) Surface Coordinates
'J‘:t The surface-oriented generating system of equations, with the option of
:’ul, . arbitrary coordinate control, 1s now obtained by putting suitable restrictions
\f: on the Beltramians appearing in Equation (19a). Similar to Equation (3), a

L general specification of the Beltramians is

‘r'! - .

;: M A‘z"x‘ - g“"Pa‘ﬂ, (20)
)

)

\ where P}, satisfy all the properties stated earlier, including Equations (10)
N and (11) with T replaced by T.

e To be specific, we take the surface x7 = const as the given surface and
e x!' = ¢, x? = 1. Then Equation (19a) becomes

[ .

()

2 Lr=n"R, (21a)
::‘

N where

i 5 40

- L =800~ 28129¢, + 819,y + PO+ 00,

% -

e:: P=guPli~2g,,Ply + g,, P, (21b)
)

L) - v

::: Q=82P) - 2812P% + 2, P5

".

ta

v,

sy
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3. SURFACE-GRID EQUATIONS FROM THE LAPLACIANS

-
-

In this section an attempt is made to establish a relation between the
surface equations derived by using the formulae of Gauss [Equation (19a)]
and the surface equations as derived from the inversions of the 3D Laplacians.

Let &, 7, be a general curvilinear coordinate system in R3 such that £, 7
form the coordinates in the surface { =const, with { as the transverse
coordinate. Starting from Equation (B.3) of Reference [1] and using Equation
(A2), we get (refer to [11] for more details)

Gy(kP + kP )r,

ﬂrt X , (22a)
where the differential operator Q is
Q=D+T® é 22b
ax* (22b)
d
=D+(5%+G;4,x%) pr (22¢)
In (22b,¢) the differential operator D defined in (19b) is
D=goydee~ 28120, + 8119,y (22d)
and
T*=2g,l 15— gl —guln, (22e)

§*=2g,o(T - Th) —gx(ThH = T1) —gu(Te - T). (22f)
where a = 1,2. Further

A=n-r, (22¢)

n being the unit surface normal vector on { = const.

It must be emphasized that I}, and T, are the J-space and 2-space
Christoffel symbols of the second kind respectively, and in general they are
not equal to each other at { = const. Thus, a comparison of Equations (19a)
and (22a) shows that the two sets of surface generators are entirely different.
However, it has been shown below that Equations (19a) and (22a) become

REOARAA AL LA LY & A X : ‘ T R R L L U -
Lttt LA, S e T i G at B st I M RO SN iyt '-\'E\mm



¥ ,
:: curvilinear coordinates (of any nature) in a plane.
;‘ (ii) When §,71 are any general coordinates in a surface, but { (the
4 transverse coordinate) is orthogonal to the surface.
! Case (i) is patently straightforward. For case (ii), noting that { is orthogo-
. nal to the surface, we have
N
i Ei3=8n=0, (23a)
K -
¢ and
i [ (23b)
. n= - g .
J s, TV
¢
0
:: Under the conditions (23a) it is easy to show that
A
}' a a
e Tgv =Ty
K where all Greek indices assume only two values (here 1,2). Thus §% =0, and
':u using (23b) we find that Equations (19a) and (23a) become the same
oy equations under the condition of orthogonality of the {-coordinate to the
h surface { = const. Further, under this condition the Beltramians and the
"] Laplacians of § and % are related through the following equations:
o e rl
\ Ti=Ad- —, (24a)
X 81
\ I
W Vig=Am— =~ (24b)
1] 33
4
‘ ) Further,
)
': ; Iy @+
:Q V2§=——£————"__-_—", (24C)
: 83 V&
u where
n
& 1 G
; kS 4 kO = — — (24d)
3 oo 255G, &
y
K
"
«
K
& . . Y -
R B R R R R e e Yo B e R R A e e A e Y YN .
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exactly the same equations under the following conditions:

(i) When the surface degenerates into a plane, in which case £,  are the
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and [referring to (19b)]

.
.

Gy=gugn— (‘u)z~

4 SURFACE GENERATING EQUATIONS BASED ON A
VARIATIONAL PRINCIPLE

The use of a variational principle in the generation of both 2D and 3D
grids has already been considered by Brackbill and Saltzman [15, 16] and
Thompson and Warsi [17]. In this section we shall consider only the surface
grid generation problem based on the use of a variational principle. In essence
the following analysis is a unified approach to both the plane 2D and surface
2D cases from a variational viewpoint.

e STl L e Let x!, x2 be the coordinates in a surface. Consider the surface functional
I-/,/(—:;qux‘dx’, (25)

where G, =g, 8, —(812)® and ¢ is a specified function. The condition
81 = O then leads one to the Euler-Lagrange equations (using the summation
convention)

aix,(/c_w)-i——a(@“ -0 (26)

ax? dx, 4 ’

where x, (r = 1,2,3) are the rectangular Cartesian coordinates, x# are the
curvilinear surface coordinates, and

ax, %,

x, , X, g™ "=
B 9x? 8 9 9z B

From Equation (26), it is a purely algebraic problem to show that

_
G, d 1 4dC
Lz, =12 ._,(___ 2 ) (27a)
2 ax VCJ 3:,}
where
L=C "———az A i (27b)
= * + .x° . -
38 Gze 1P (82 )h"

O ol

"ol

N Ry
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Let now ¢ be a function of z, ,. Then expanding Equation (26) and using
. Equation (27), we get :

( Lx,= - M, (28a)
KX where
o[ G, d¢ de aC G, 4 do
; ) Pl it vl v e 1t )
fs: r8 0% x,g 0x ¢ ox X8
&’.
g On the other hand, if ¢ is taken as
¢=F/G,, (29a)
;; where F is still a function of z, 4, then in place of (28b), we have
by
3 1{ 3G, dF oG, GF
» =l gt
: 2F\ dx, g 3x% 9xF 9x, ,
0
i L G
\". 2G; dx, 4 dx F 9xf\ dx, 4
h
'f: The generating system (28a) with L defined in (27b) is similar to Equation
' S (19a). However, the selection of the form of the function ¢ or F which yields
M the right-hand side of Equation (19a) seems to be a difficult task. One simple
\ case is when ¢ = 1. In this case the minimization of  implies [from (28a)]
¥ Lx, =0,
'i
and these are the equations for a minimal surface. The form (29a) is of
‘. interest because the choice
2
‘.: F=g,+gx. (30a)
Kt
‘. or
R o=g'+g” (30b)
]
. B
e is equivalent to the “smoothness™ problem in 2D plane coordinates, as has

-~ ..

- -
N y Ra) Y » » W W " L TN PR e, ) A R " o N
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been shown in Reference [15]. It must, however, be stated that “smoothness”
of goordinates in a 2D plane problem is due to the satisfaction of the Laplace
equation. No such criterion is obvious on using either of the equations (30) in
(28a).

5. ANALYTICAL COMPARISONS AND CONCLUSIONS

P

Based on the foregoing analysis, we conclude as follows:

(a) The Laplace-Poisson system for 2D regions is optimal, since its inver-
sion coincides exactly with the Gaussian equations in a plane. [Note: In a
plane the right-hand side of Equation (19a) is zero and the Beltramians
become the Laplacians.]

(b) The inversion of the Laplace-Poisson system for 3D regions for a
constant coordinate value, viz., for a surface, does not reduce to the Gaussian
equations (cf. Section 3) except when the transverse coordinate is taken as
orthogonal to the surface {¢f. Equation (22a)]. This implies that the Laplace-
Poisson system in 3D regions with three nonorthogonal coordinates is not
optimal, though it is a valid system. The extra terms (22f) should somehow be
managed, and in practice, they are taken as part of the arbitrary specified
control functions. This means that the generated coordinates will assume a
distribution which may not be to one’s desire. It must, however, be again
emphasized that the terms (22f) vanish when the transverse coordinate is
orthogonal to the surface. (In Reference {18}, the author had to make other
assumptions besides orthogonality.)

(¢) For the elliptic system described by Equation (15) the conclusions
discussed in (b) hold good.

(d) The generating system described by Equation (16) is a Cartesian-type
Poisson system. It looks difficult to assess its optimality in relation to the
Gaussian equations.

(e) The equations derived from the variational principle, viz,, (28), are
nearly optimal, though it looks difficult to find the approprate function ¢
which makes the right hand side of (28a) the same as that of Equation (19a).

APPENDIX

The following formulae have been used in the main text of the paper and
can be found in any standard text on tensors, e.g., [19], [20].

In an Euclidean space R" (though here we are concerned only with R? or
Ry, endowed with the curvilinear coordinates x', the first partial denivatives

- o P “ e =
W -'.:.\.bf'.n".p}i‘.:\tﬁ\ T e e if.\’\i
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4
:’: . e R : of the covanant basis vectors a; are expressible as linear functions of a,;

. ba =Tta, (Al)
N ’ axi Y
E . where I' k are the Christoffel symbols of the second kind. Here, and in what
. ' follows, a repeated lower and upper index will always imply summation over

the range of index values. Equation (Al) can alternatively be written as

; r= I','}r_k, (A2)
. where a comma preceding an index implies a partial derivative, and r is the
: position vector, viz.,

’ P r;(x,y.:)or(zl,xz.xa).

{: The Laplacian of a scalar ¢ is given by

; o ~ V=g~ Ths,). (A3)

From (A3), we have

+

B vit= —girk (A4)
)

b The quantities g’/ and g,; are respectively the contravariant and covariant
" components of the metric tensor, and the two are related as

; i - gpngn-gp'gnv’

e g

%

! where (i, p,r) and (j,n,s) are to be taken in the cyclic permutations of
[ (1,2,3), and

. g =det(g, ,).

d Let x' and £* be two allowable coordinate systems in a Euclidean space
1 such that each of the functions ' = ¢'(x/) and x' = y'(z’) define a transfor-

mation with

\ . ax'
J= det(——) 0, ]=det(5—f—,)*0.

n TR . ™ n OO %\ ) M NN ANE 2.8 Fev ‘\"
BADSRAY B ) "\
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On transformation of coordinates from x’ to ', we have

© 7 . 8 g
g= 7 g= 72 (AS)
_ dx' dx! 6
gpn= af’ ai“glj’ ( ) vy
e . :
& T B (A7) [
F r ax%? dx' dx! I%i  ax* 8 *
=2 I3 e e e o e
L b=l a5 o T aFar” anl” (48)
R - - e aF _ 9F oF .
ax*3x™ " axt Tax* axn (A9)
- The first partial derivatives of x* with respect to %' are given by
i’ C}
axr I’
where

i JF 0% o o Al
17 % axn 9x" axt’ (410)

and (i, 7, n) and (j, r, k) are cyclic permutations of (1,2,3).
The second partial derivatives of one set of coordinates are related with
those of the other set as

RN

! %’ 3% dx’ ox' ox! A1) .
35 9z"  dx'dx/ d%' dF* 9i" {

We now consider a surface embedded in R®. All tensor indices associated
' with a surface will be denoted by Greek letters (except the letter v). In
‘ contrast to Equation (A2), the formula of Gauss is

I "T:a'.a +n'"b 4, (Al12)

LR A g

."'P\'inxﬁ.”-.~ A I U
2 AN Ax';{} CRTAT LIS Ve W YA T
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“ "
- oot o - (X
e T where T:, are the surface Christoffel symbols of the second kind, b, are the .:i'
T coefficients of the second fundamental form, and n'”’ is the unit surface
# normal on the surface v = const. The values of v and other Greek indices X
follow the following scheme: 1
. v = 1: Greek indices a, 8, etc. assume values 2 and 3. :
v = 2: Greek indices a, 8, etc. assume values 3 and 1. N
v = 3: Greek indices a, B, etc. assume values 1 and 2. B
"
The Beltramian of a scalar ¢ is given by
.
(») B P oy,
A6 =g*(¢ 5= Tos0 5)- (A13) o
S
From (A13), we have X
- i
A(‘_;)xa = - gaﬂfr:ﬁ‘ (A14) ‘.‘:
X
For a surface the formulae (A5)-(A9) are equally applicable with proper ..,:
choice of indices and replacing T by T.
S
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